首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66289篇
  免费   5749篇
  国内免费   2829篇
电工技术   3767篇
技术理论   2篇
综合类   3643篇
化学工业   13287篇
金属工艺   2096篇
机械仪表   2609篇
建筑科学   3809篇
矿业工程   5689篇
能源动力   5643篇
轻工业   5211篇
水利工程   281篇
石油天然气   17733篇
武器工业   298篇
无线电   1528篇
一般工业技术   3293篇
冶金工业   3281篇
原子能技术   665篇
自动化技术   2032篇
  2024年   95篇
  2023年   777篇
  2022年   1636篇
  2021年   2227篇
  2020年   2293篇
  2019年   1941篇
  2018年   1704篇
  2017年   1841篇
  2016年   2355篇
  2015年   2295篇
  2014年   4163篇
  2013年   4047篇
  2012年   5161篇
  2011年   5279篇
  2010年   3573篇
  2009年   3495篇
  2008年   2984篇
  2007年   3805篇
  2006年   4107篇
  2005年   3339篇
  2004年   2899篇
  2003年   2564篇
  2002年   2184篇
  2001年   1970篇
  2000年   1631篇
  1999年   1310篇
  1998年   992篇
  1997年   857篇
  1996年   681篇
  1995年   581篇
  1994年   466篇
  1993年   342篇
  1992年   275篇
  1991年   227篇
  1990年   191篇
  1989年   171篇
  1988年   70篇
  1987年   51篇
  1986年   46篇
  1985年   33篇
  1984年   31篇
  1983年   21篇
  1982年   19篇
  1981年   61篇
  1980年   37篇
  1979年   7篇
  1977年   4篇
  1976年   3篇
  1973年   5篇
  1951年   15篇
排序方式: 共有10000条查询结果,搜索用时 25 毫秒
91.
The increase in the production of acid gas consisting of H2S, CO2, and associated impurities such as ammonia and hydrocarbons from oil and gas plants and gasification facilities has stimulated the interest in the development of alternative means of acid gas utilization to produce hydrogen and sulfur, simultaneously. The present literature lacks a detailed reaction mechanism that can reliably predict the thermal destruction of NH3 and its blend with H2S and CO2 to facilitate process optimization and commercialization. In this paper, a detailed mechanism of NH3 pyrolysis is developed and is merged with the reactions of NH3 oxidation and H2S/CO2 thermal decomposition from our previous works. The mechanism is validated successfully using different sets of experimental data on the pyrolysis and oxidation of NH3, H2S, and CO2. The proposed mechanism predicts the experimental data on NH3 pyrolysis remarkably better than the existing mechanisms in the literature. The mechanism is used to investigate the effects of NH3 concentration (0–20%) and reactor temperature (1000–1800 K) on the thermal decomposition of H2S and CO2. A synergistic effect is observed in the simultaneous decomposition of NH3 and CO2, i.e., NH3 conversion is improved in the presence of CO2 and the decomposition CO2 to CO is enhanced in the presence of NH3. The presence of H2S suppressed NH3 conversion, while the conversion of H2S remained unchanged with increasing NH3 concentration at temperature below 1400 K due to the low conversion of NH3 (up to 18%). At temperature above 1400 K, NH3 conversion increased rapidly and it triggered a decrease in H2S conversion as well as the yields of H2 and S2. The major reactions involved in the decomposition of H2S, CO2, and NH3 and the production of major products such as H2, S2, and CO are identified. The detailed reaction mechanism can facilitate the design and optimization of acid gas thermal decomposition to produce hydrogen and sulfur, simultaneously.  相似文献   
92.
93.
刘胜男  刘云锋  曹荣  刘淇 《食品科学》2021,42(20):167-172
为研究加工方式对玉筋鱼干风味的影响,实验按加工方式分为加盐煮制冷风干燥(boiling in salt solution followed by cold air drying,SCC)组和冷风干燥(cold air drying,CD)组。采用电子鼻技术、气相离子迁移谱(gas chromatography-ion mobility spectroscopy,GC-IMS)技术、氨基酸自动分析技术、高效液相色谱技术测定玉筋鱼干中的风味成分。结果表明,不同加工方式制作的玉筋鱼干在气味、滋味方面存在显著差异。电子鼻、GC-IMS技术均能区分不同工艺制作的玉筋鱼干气味,采用GC-IMS技术共分析出68 种挥发性成分,庚醛、戊醛、3-甲基丁醛对玉筋鱼干独特风味的形成有重要影响,其中3-甲基丁醛源自CD工艺,其区别于SCC工艺气味的关键物质。玉筋鱼干中的主要鲜味氨基酸是Glu,主要呈味核苷酸是肌苷酸;CD组玉筋鱼干中的鲜味氨基酸和甜味氨基酸含量占总游离氨基酸的比重高于SCC组,同时CD组滋味活性值、味精当量值均高于SCC组,所以仅采用CD工艺制作的玉筋鱼干滋味优于加盐煮制后CD工艺制作的玉筋鱼干。  相似文献   
94.
Free Piston linear Generator (FPLG) engine fueled by compressed natural gas (CNG) has recently gained increased research attention. However, due to the low-velocity burning and poor lean limit of CNG fuel, the FPLG engine combustion stability, performance, and efficiency are still low. Hydrogen has a greater burning velocity with wider flame limits that could extend the lean burn limits and combustion characteristics of CNG. This paper compares pure CNG and 10% hydrogen-enriched CNG at various ignition speeds (0.6 ms, 0.8 m/s, and 1 m/s), injection positions (0 mm, 5 mm, 10 mm and 15 mm), and lambda ratios (0.9, 1.4 and 1.7) on the combustion characteristics, performance, and conversion efficiency are duly discussed. The findings show that the FPLG combustion stability limits increase with the hydrogen addition into the CNG. The CNG in-cylinder pressure increases significantly when the injection position is advanced, whereas the hydrogen addition reduces the influence of the injection position. The heat release rate increases by 15.62% and 23.72% with hydrogen addition, corresponding to the advanced and retarded injection positions. Consequently, the hydrogen addition increases the power RMS to 209.21 W and 232.64 W with an increment of 3.46% and 3.13%, respectively. Conclusively, the hydrogen addition into the CNG evidently shortens the combustion duration while improving the heat release rate, combustion stability, power RMS, Cycle-to-Cycle variation, and conversion efficiency.  相似文献   
95.
Bio-hydrogenated diesel (BHD) is a second generation biofuel that can be produced from vegetable oil and hydrogen via hydroprocessing. BHD is considered as one of alternative and renewable energy. This work presents evaluation of environmental impacts of BHD produced from palm fatty acid distillate (PFAD) compared to fatty acid methyl ester (FAME). Greenhouse gas emission, energy consumption, and overall environmental impacts are assessed. System boundary is from palm oil cultivation to BHD production. The functional unit is defined as 1 kg of fuel produced at the plant. The results indicate that energy consumption of BHD-PFAD is 1.18 times higher than that of BHD-FAME, while giving GHG emission 13.56 times lower than that of BHD-FAME. The results of overall environmental impacts indicated that BHD-PFAD was 3.58 greater than that of BHD-FAME.  相似文献   
96.
Electrical utilities apply condition monitoring on power transformers (PTs) to prevent unplanned outages and detect incipient faults. This monitoring is often done using dissolved gas analysis (DGA) coupled with engineering methods to interpret the data, however the obtained results lack accuracy and reproducibility. In order to improve accuracy, various advanced analytical methods have been proposed in the literature. Nonetheless, these methods are often hard to interpret by the decision-maker and require a substantial amount of failure records to be trained. In the context of the PTs, failure data quality is recurrently questionable, and failure records are scarce when compared to nonfailure records. This work tackles these challenges by proposing a novel unsupervised methodology for diagnosing PT condition. Differently from the supervised approaches in the literature, our method does not require the labeling of DGA records and incorporates a visual representation of the results in a 2D scatter plot to assist in interpretation. A modified clustering technique is used to classify the condition of different PTs using historical DGA data. Finally, well-known engineering methods are applied to interpret each of the obtained clusters. The approach was validated using data from two different real-world data sets provided by a generation company and a distribution system operator. The results highlight the advantages of the proposed approach and outperformed engineering methods (from IEC and IEEE standards) and companies legacy method. The approach was also validated on the public IEC TC10 database, showing the capability to achieve comparable accuracy with supervised learning methods from the literature. As a result of the methodology performance, both companies are currently using it in their daily DGA diagnosis.  相似文献   
97.
A dual-reflux pressure swing adsorption (DR-PSA) process was proposed and simulated to initially separate the blue coal gas, aiming to capture carbon dioxide (CO2) and enrich hydrogen (H2), simultaneously. With a feed flow rate of 7.290 slpm, a light product reflux flow rate of 0.505 slpm and the heavy product reflux flow rate of 3.68 slpm, the developed DR-PSA process could capture CO2 up to 64.01% with a recovery of 99.60% and enrich H2 up to 34.66% with a recovery of 97.63% from the blue coal gas (36.2% N2/28.5% H2/13.9% CO/12.7% CO2/8.7% CH4). In addition, in order to optimize the process, the effects of various operating parameters on the DR-PSA process performance in terms of product purity and recovery were discussed in detail, including the feed position, the light product reflux ratio and the heavy product reflux ratio. Moreover, the dynamic distribution behaviors of pressure, temperature and gas-solid concentration were presented to explain and evaluate the process separation performance in depth under different operating conditions.  相似文献   
98.
《Oil and Energy Trends》2019,44(7):26-28
Current data on natural gas production, as well as a breakdown of production by country. Updated on a monthly basis.  相似文献   
99.
张坤  陶俊  王晓峰  常静  毕福强  姜帆  杨雄 《含能材料》2019,27(11):908-914
为详细了解高氯酸铵(AP)对5,5'-联四唑-1,1'-二氧二羟铵(HATO)热分解影响的机制,采用热重-质谱-傅里叶红外光谱(TG-MS-FTIR)联用技术、差示扫描量热法(DSC)、傅里叶红外光谱(FTIR)方法,对HATO和HATO/AP共混物的热分解特性、气体产物以及凝聚相变化进行了研究。结果表明,HATO具有两个连续热分解阶段,HATO/AP共混物则有3个热分解阶段;HATO、AP共混后,HATO使得AP熔融峰消失,AP可使HATO的热分解初始温度提前,热分解时间延长且不影响分解完全性;HATO热分解气体产物有CO_2、N_2O、HCN、NH_3、NO、N_2、H_2O,而HATO/AP共混物热分解产生气体主要有N_2、CO_2、N_2O、HCN、NH_3、H_2O、HCN、NO、HCl、NOCl;另外,采用等转化率法计算HATO和HATO/AP共混物四唑环基团的活化能分别为53.38 kJ·mol~(-1)和60.69 kJ·mol~(-1);通过对比HATO和HATO/AP共混物热分解特性以及凝聚相特征基团的变化,阐释了AP使HATO热分解温度提前的机理很可能是:AP的铵根离子与HATO之间发生了质子转移;推测AP导致HATO热分解时间延长的原因为:HATO/AP共混物产生的NH_3与热分解中间体1,1'-二羟基-5,5-联四唑(BTO)反应生成5,5'-联四唑-1,1'-二氧铵盐(ABTOX)。  相似文献   
100.
Semivolatile organic compounds (SVOCs) emitted from building materials, consumer products, and occupant activities alter the composition of air in residences where people spend most of their time. Exposures to specific SVOCs potentially pose risks to human health. However, little is known about the chemical complexity, total burden, and dynamic behavior of SVOCs in residential environments. Furthermore, little is known about the influence of human occupancy on the emissions and fates of SVOCs in residential air. Here, we present the first‐ever hourly measurements of airborne SVOCs in a residence during normal occupancy. We employ state‐of‐the‐art semivolatile thermal‐desorption aerosol gas chromatography (SV‐TAG). Indoor air is shown consistently to contain much higher levels of SVOCs than outdoors, in terms of both abundance and chemical complexity. Time‐series data are characterized by temperature‐dependent elevated background levels for a broad suite of chemicals, underlining the importance of continuous emissions from static indoor sources. Substantial increases in SVOC concentrations were associated with episodic occupant activities, especially cooking and cleaning. The number of occupants within the residence showed little influence on the total airborne SVOC concentration. Enhanced ventilation was effective in reducing SVOCs in indoor air, but only temporarily; SVOCs recovered to previous levels within hours.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号